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Abstract 

Infectious diseases pose a significant threat to sustainable agricultural production. While conventional quantitative 
genetic theory has successfully enhanced the resistance of animal individuals or populations, it fails to consider epi-
demiological factors. As a result, it may not adequately capture the maximum genetic gains in selected populations. 
This study aims to address this limitation by employing a genetic-epidemiological model that enables the estimation 
of genetic parameters for three host traits: susceptibility, infectivity, and recovery (or removal/mortality). We con-
ducted our analysis on a population of striped catfish (Pangasianodon hypophthalmus) exposed to the Edwardsiella 
ictaluri pathogen, which causes bacillary necrosis of pangasius (BNP) disease, through challenge test experiments 
using injection and cohabitation methods. A total of 560 individuals (490 offspring and 70 parents) were evaluated 
for disease resistance, measured as the time (in days) from the challenge test to death. Our analysis using the genetic-
epidemiological model revealed significant heritability in the epidemiological host traits. The genetic variances 
for infectivity were found to be greater than those for susceptibility and mortality. Additionally, genetic correla-
tions of susceptibility with infectivity and mortality were moderate and negative, while those between infectivity 
and mortality were positive. Significant SNPs obtained from our genome-wide scan exhibited small additive genetic 
and non-significant (or incomplete) dominant effects, suggesting polygenic nature of epidemiological host traits. 
Genomic prediction accuracies for the transition time between susceptibility and infectivity, as well between infec-
tivity and mortality were moderate to high (0.16 – 0.73). These findings suggest promising prospects for improving 
epidemiological host traits in genetic programs to enhance the overall resilience of the striped catfish population. The 
selection index approach yielded a predicted genetic gain ranging from 5.5 – 10.3% per generation for the epidemio-
logical host traits. The accuracy of the selection index was moderate (0.585). Our study provides fundamental genetic 
parameters for modelling alternative selection strategies aimed at increasing disease resilience to infectious diseases 
in striped catfish and other aquaculture species.
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Introduction
Infectious diseases caused by microorganisms, includ-
ing parasites, bacteria, and viruses, have significant 
impacts on individual health, economics, food secu-
rity, and animal welfare. In the agricultural sector, esti-
mated economic losses attributed to infectious diseases 
reach up to 50% of turnover in developing countries 
and approximately 20% in developed countries [1]. An 
illustrative example of the economic losses for striped 
catfish alone due to Edwardsiella ictaluri, especially 
during the fingerling stage, ranged from 48 to 94 mil-
lion US dollars per annum [2]. Theoretical predictions 
and modelling approaches indicate that the severity of 
infectious diseases could escalate due to changing envi-
ronments and intensified production systems, leading 
to increased stress, immunosuppression, and frequent 
disease outbreaks. As a result, these diseases compro-
mise the fitness and performance of hosts by disrupting 
vital biological processes, such as reallocating nutri-
tional resources for fighting infections rather than for 
production, and by reducing host immunity, conse-
quently impacting animal welfare [3].

Conventional methods for controlling infectious 
diseases comprise chemical interventions (e.g., anti-
biotics), husbandry and management practices (e.g., 
sanitation and disinfection), culling or isolating sick 
individuals, and implementing control measures like 
movement restrictions and vaccination. However, none 
of these methods prove to be cost-effective, permanent, 
or sustainable in the long run [4]. Genetics has demon-
strated as a powerful tool for understanding and miti-
gating pathogen risks while enhancing host resilience 
to infectious diseases through genetic selection [5]. In 
farmed animals, including aquaculture species, genetic 
selection approach used to improve disease resistance 
(tolerance) relies on survival data collected from patho-
gen challenge tests [6–8] or field environments [9]. Typ-
ically, survival data is recorded as presence or absence 
of a disease of interest. Other measures including path-
ogen load [10], immune response [11] or indicators of 
animal health [12] are less frequently recorded. These 
traits are analysed using various quantitative genetic 
models, such as linear mixed model for continuous 
expressions or the liability threshold (generalised) lin-
ear mixed model for categorical characters [13]. These 
mixed models account for systematic effects, random 
factors, and pedigree relationships, resulting in sub-
stantial improvements in disease resistance, with aver-
age genetic gains ranging from 5 to 15% per generation. 
For instance, in fish species like Atlantic salmon, resist-
ance to yerisiosis has increased by approximately 15% 
[14], while white leg shrimp (crustaceans) and Pacific 
oysters (molluscs) have gained approximately 7–8% for 

resistance to white spot disease and 10% for OsHV-1 
virus, respectively [15, 16].

Despite these successes, quantitative genetic models 
have inherent limitations as they do not encompass epi-
demiological traits or parameters, making them subop-
timal for genetic programs targeting infectious diseases. 
Recently, there has been a growing interest in incorpo-
rating epidemiological models to aid in risk identifica-
tion, determination of epidemic duration, evaluation 
of infection rates, recoveries, and mortalities, as well as 
the assessment of intervention impacts on these param-
eters [17]. The epidemiological model focuses on three 
primary parameters: susceptibility (S), infectivity (I), 
and recovery (R), forming the SIR model. Susceptibil-
ity refers to individuals who are prone to be infected or 
are more likely to be infected. Infectivity represents the 
ability of an infected individual to transmit the infection, 
with higher infectivity indicating an increased risk of 
transmission and epidemic outbreaks. Recovery signifies 
the duration it takes for an individual to recuperate after 
infection and can also refer to the time until removal or 
death occurs. In our study, we refer it as removal or mor-
tality. In the SIR model, two parameters need to be esti-
mated: transmission (β) and recovery (γ) rates [18]. They 
are important inputs to model epidemiological genetics 
of animals. Thanks to these features, the SIR model has 
been integrated with quantitative genetics theory, lead-
ing to the development of the genetic-epidemiological 
model.

The genetic-epidemiological model (GEM) made its 
initial debut in the study of gastrointestinal infections in 
sheep [19], highlighting the underestimation of response 
to selection for increased pathogen load in this parasite 
when the epidemiological model was disregarded. Sub-
sequently, the GEM was further refined to predict the 
impact of selective breeding on reducing the prevalence 
of infectious diseases in terrestrial and aquatic animal 
species [20–22]. Moreover, the GEM model enables the 
estimation of genetic effects for distinct traits, includ-
ing susceptibility, infectivity, and mortality. A review of 
published literature (unpublished results) reveals sub-
stantial genetic variations in these traits, confirming their 
genetically distinct nature. Genetic correlations between 
susceptibility and infectivity exhibit a negative relation-
ship, while those between infectivity and recovery dem-
onstrate a positive association [23]. With reliable genetic 
parameter estimates for these traits when the data are 
available, they can be amalgamated into a selection index, 
facilitating a multi-trait selection program to enhance 
the resilience of animals/populations against infectious 
diseases. Furthermore, this approach offers a pathway to 
improving overall population resilience rather than solely 
focusing on the individual level [24].
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To date, only a few studies have reported genetic vari-
ances for susceptibility, infectivity, and recovery traits in 
aquaculture species, specifically anaemia virus in Atlantic 
salmon [25], Philasterides dicentrarchi in turbot [23] and 
cyprinid herpes virus type 3 (CyHV-3) in common carp 
[26]. Hence, the present study aims to utilise the GEM 
model to estimate epidemiological traits of striped cat-
fish (Pangasianodon hypophthalmus) exposed to the E. 
ictaluri pathogen in a challenge test experiment. The ulti-
mate objective of our study is to refine breeding strategies 
that enhance the overall resilience of the striped catfish 
population against E. ictaluri, a causative agent of bacil-
lary necrosis of pangasius (BNP) disease in this species.

Materials and methods
Animals
The experimental animals in this study were obtained 
from a selective breeding program aimed at enhancing 
disease resistance to the Bacillary Necrosis of Pangasius 
(BNP) caused by E. ictaluri in striped catfish at Research 
Institute for Aquaculture No.2 (RIA2), Vietnam  [7]. In 
2020, the first generation of catfish involving 266 brood-
stock (166 females and 100 males selected from a sepa-
rate breeding program for high growth) was produced 
employing a nested mating design with a male-to-female 
ratio of 1:2. Following the breeding protocol described 
in our previous studies [27], a total of 166 families (com-
prising 32 full-sib families and 134 half-sib families) were 
successfully produced in 2021.

The fry from each family were raised in separate fiber-
glass tanks (1.5m3) for a duration of three weeks before 
being transferred to a net hapa system installed in an 
earthen pond. During this period, they were fed a high 
protein diet (40%) three times a day. Upon reaching an 
average body weight of 15–20 g (about 2–3-month-old), 
100 fingerlings per family were randomly collected and 
individually identified using PIT (Passive Integrated 
Transponder) tags. Subsequently, half of each family 
was allocated for grow-out in ponds, while the other half 
that was pathogen-free based on our PCR test (averaging 
three fish per family) was utilised for pathogen challenge 
tests to assess E. ictaluri resistance.

Challenge test and data collection
The challenge test comprised a total of 5,328 individuals 
derived from 166 families, with an average of 32 individu-
als per family. Firstly, the experimental fish were accli-
matised in cement tanks for approximately two weeks. 
Following this acclimation period, an equal number of 
fish from each family were randomly assigned to different 
cement tanks, each with a capacity of 10 m3, to conduct 
the challenge test using the cohabitation method [7].

The cohabitant fish (originated from the same fami-
lies as the experimental animals with an average weight 
of 16.7 ± 6.1 g) were initially injected with the E. ictaluri 
pathogen at a dosage of  106 CFU/0.2 ml per fish [7]. Two 
days after the injection, they were introduced into the 
cement tanks (10  m3) to rear together with the experi-
mental fish at a ratio of 1 cohabitant fish to 3 experi-
mental fish (or approximately 30% cohabitant fish or 
averaging 24 indviduals in each tank). The bacterial den-
sity necessary for disease infection was maintained by 
adding the bacteria to the experimental tanks on day 4, at 
a density of  105 CFU per one ml of rearing water, that is 1 
L of medium containing  109 CFU of the pathogen in each 
10  m3-tank. The duration of the experiment spanned 23 
days, during which no fish mortality was observed. The 
bacterial strain tested from our previous experiments at 
RIA2 was used in this study.

During the experimental period, the feeding rate was 
reduced from 3.0% to 1.5% of the total biomass in each 
tank. The highest mortality rate occurred on day 5, and 
deceased fish were sampled for laboratory PCR testing 
to confirm that the symptoms leading to their demise 
(such as white spots in the spleen, liver, and kidney) were 
indeed caused by the E. ictaluri pathogen. Upon comple-
tion of the experiment, all surviving fish were properly 
disposed, following the biosecurity burial procedures in 
accordance with the regulations set by the national vet-
erinary authority (the Department of Animal Health, 
Vietnam).

Throughout the challenge test, fish that were dead due 
to the infection were collected every three hours until 10 
PM and subsequently in the next morning (5 AM), and 
their clinical symptoms were recorded. These collected 
data were used to compute two indicators of E. ictaluri 
resistance, namely survival status and survival time. Sur-
vival time was defined as a continuous trait, measured 
from the beginning of the test until the point of the fish’s 
demise, expressed in days. In this study, we analysed only 
the mortality time. When phenotypic measurements 
were made, fin tissue samples were also collected from 
individual fish for genotyping. Only 490 samples (12–15 
fish per family × 40 families from a single generation), 
along with 70 parental specimens, were randomly chosen 
for the genotyping and subsequent genetic and genomic 
analyses.

Genotype data
DNA samples were extracted from the dorsal fin tissues 
of 560 individual fish and subsequently analysed using 
Diversity Arrays Technology sequencing (DArTseq™). 
DArTseq™ is an innovative approach that combines 
complexity reduction techniques from DArT (Diversity 
Arrays Technology) with cutting-edge next-generation 
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sequencing platforms [28]. Detailed information of the 
library constructions is given in Vu et al. [29].

The resulting sequences underwent thorough analysis 
through proprietary DArT analytical pipelines. SNP call-
ing involved clustering all tags from all libraries included 
in the DArTsoft14 analysis, utilising DArT PL’s C + 
+ algorithm with a threshold distance of 3. The pipeline 
employed a reference-free approach. The average call-
rate for variants was 99%, and for individual samples, it 
was 92%. This led to the identification of 14,154 single 
nucleotide polymorphisms (SNPs) using DArT analytical 
pipelines (Supplementary Figure S1).

To ensure data quality, these SNPs were subjected to 
additional quality control measures using the dartR pack-
age [30], where loci with call rates below 95%, minor 
allele frequencies below 5%, and significant departures 
from Hardy–Weinberg equilibrium (P < 0.05) were 
excluded. After this stringent filtering, 6,470 high-quality 
SNPs remained (averaging 209 SNPs per chromosome, 
ranging from 74 to 314), forming the basis for subsequent 
genetic and genomic analyses.

Estimation of genetic (co)‑variances
We utilised a genetic-epidemiological model to analyse 
our data. This model assumes that the spread of disease 
within a contact group (i.e., in the same challenge test 
tank) follows the SIR model, where individuals’ transi-
tion rates are influenced by both systematic and random 
effects [31]. The SIR model, as described in Pooley et al. 
[18] and [32], classifies individuals as susceptible to infec-
tion (S), infected (I), and mortality, that is dead fish were 
removed from the experimental facilities (R).

The time-dependent force of infection for a susceptible 
individual, denoted as j, is represented by λj(t), indicating 
the probability per unit time of becoming infected. For 
those individuals who do become infected, their infec-
tious duration is assumed to follow a gamma distribution 
with a mean of wj and a shape parameter of k. We can 
express these quantities as follows:

In Eq.  1, β and γ represent the population average 
transmission and recovery rates, respectively. Gz, known 
as the "group effect" (where z indexes the contact group), 
accounts for group-specific factors that influence the 
speed of an epidemic within one contact group relative to 
another. These factors may include variations in animal 
management conditions, environmental differences, or 
pathogen strains with varying virulence. Gz is treated as a 
random effect with a standard deviation of σG, following 

(1)�j(t) = βeGzegj i e
fi , wj = (γ erj )−1

a normal distribution. The expression for wj does not 
include a group effect because we assume that the envi-
ronment primarily affects the speed of infection spread 
within groups, rather than individual susceptibility, infec-
tivity, or mortality.

Additionally, Eq. 1 involves gj, fi, and rj, which represent 
the fractional deviation in individual j’s susceptibility, 
individual i’s infectivity, and mortality, respectively, com-
pared to the population. These deviations can be decom-
posed into various main factors denoted as g, f, and r, 
respectively (Eq. 2 below).

whereµ  is a SNP effect; bg, bf and br corresponds to 
fixed effects, i.e., spawning batch and age from birth to 
commencement of the challenge test. X represents a 
design matrix that can account for differences in traits. 
The additive genetic contributions a = (ag, af, ar) cap-
ture the relationships in trait values between different 
individuals and follow a multivariate normal distribu-
tion with a mean of zero and a covariance matrix A ⊗ Ω. 
Here, A represents the pedigree relationship matrix esti-
mated from all 560 individuals, and Ω is a 3 × 3 covari-
ance matrix that describes potential correlations between 
traits (susceptibility, infectivity, and mortality). Finally, 
the residual contributions ε = (εg, εf, εr) in Eq. (2) account 
for all other variations. These residuals also follow a mul-
tivariate normal distribution with a mean of zero and a 
covariance matrix I ⊗ Ψ, where I is the identity matrix 
reflecting the assumption of uncorrelated residuals 
between individuals, and Ψ is a 3 × 3 covariance matrix 
that characterizes environmental correlations between 
traits.

Our analysis of the SIR model utilised the SIRE 2.0 
package, which leverages the Monte Carlo Markov 
Chain (MCMC) approach for Bayesian inference of 
genetic parameters [18]. By employing default settings, 
with 10,000 samples and burn-in of 2000 samples in 
three independent runs, we ensured convergence (esti-
mated effective sample size of over 200 for each model 
parameter).

The heritability for host traits was calculated as 
h2 = σ̂ 2

a

σ̂ 2
a+σ̂ 2

e
 where σ̂ 2

a  is the additive genetic variance, and 
the residual variance ( ̂σ 2

e  ). The genetic and phenotypic 
correlations between the traits were estimated as: 
r = σxy√

σ 2
x

√
σ 2
y

 , where the numerator represents covariance 

between the two traits and the denominator specifies the 
genetic or phenotypic variance of individual traits (x and y).

(2)
g = µ+ Xbg + ag + eg
f = µ+ Xbf + af + ef
r = µ+ Xbr + ar + er
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Accuracy of genomic prediction
Since the disease status (susceptibility and infectivity) 
of individual animals couldn’t be determined reliably 
under group testing in the tanks, we conducted an evalu-
ation of the genomic prediction accuracy for the transi-
tion time between susceptibility and infectivity (i.e., the 
time taken for individual i to transition from S → I), as 
well as between infectivity and mortality (i.e., the time 
taken for individual i to transition from I → R). These data 
were extracted from the SIR model analysis (Genotype 
data section) and analysed using the genomic best linear 
unbiased prediction (GBLUP) method in ASReml [33]. 
In each trait model, we used two sets of SNPs: the full 
set of 6370 SNPs and a subset of highly significant SNPs 
(P < 1e-05). The univariate GBLUP along with PBLUP 
models employed the same fixed and random effects as 
Eq. 2. To obtain the accuracy of genomic prediction for 
these traits, we performed a five-fold cross-validation 
over 20 iterations and computed the correlation between 
the predicted and actual phenotypes within the valida-
tion set, which was then divided by the trait heritability. 
Additionally, when subsets of SNPs were evaluated, the 
five-fold cross validation used only the significant SNPs 
identified from GWAS that was conducted separately for 
each training data subsets to avoid any possible bias in 
the prediction accuracy for the trait studied.

Estimation of SNPs effects
In the SIR model, the SNP contribution to the host traits 
for individual j depends on its genotype as the followings:

The parameters sg, sf and sr denote half the difference in 
trait values between the homozygote genotypes (AA and 
BB) and Δg, Δf and Δr represent the degree of dominance 
(a value of 1 (−1) indicates complete dominance of the A 
(B) allele over the B (A) allele), with a value of zero indi-
cating no dominant effect.

We estimated the additive genetic and dominant effects 
for top significant SNPs obtained from our genome-
wide association study (GWAS) for two traits: transi-
tion time between susceptibility and infectivity as well 
between infectivity and mortality. Data for these two 
traits were extracted from the output generated by Sire 
2.0, as described above (heading 2.3). Our GWAS anal-
ysis used a multi-locus mixed model. This approach 
incorporated fixed effects of spawning batch and age, 
and a kinship matrix was included as a random factor 
to account for family structure (Supplementary Figure 
S2). The GWAS analysis was conducted for each training 

gSNPj =
Sg Sf Sr

Sg�g , f
SNP
i = Sf�f , f

SNP
i = Sr�r

−Sg −Sf −Sr

} if j is AA
if j is AB
if j is BB

subsets using the blupf90 family program [34], involving 
three main steps: 1) renumf90 to renumber the data into 
a standard format used by the program, 2) blupf90 + to 
perform quality control on the genotype data, compute 
the breeding values of each individual, and generate the 
weighted genomic relationship matrix (default for single-
step analyses), and 3) the subprogram postgsf90, which 
reads breeding values along with mapping information 
for each marker to compute SNP effects and p-values. 
We utilised the CMplot R package to generate Manhat-
tan plots from BLUPf90 outputs, with the significance 
threshold set at 0.05 divided by the number of markers 
used (6470 SNPs), approximately 5.111. The GWAS mod-
els were the same as those used to compute heritabil-
ity, with identical fixed and random effects as described 
above. Regarding genome annotation, we initially estab-
lished a local SwissProt database, pivotal for subsequent 
analysis with the BLAST2GO software. Employing blastx 
with default software parameters, we translated nucleo-
tide fasta sequences into protein annotations. Subse-
quently, through meticulous mapping and annotation, we 
unveiled the corresponding GO terms.

Prediction of genetic gain
Finally, we predicted genetic gain using selection index 
approach. The breeding goal of our genetic program 
aimed at improving resistance (or resilience) of striped 
catfish to E. ictaluri disease. The traits included in the 
breeding objective (goal) are susceptibility, infectivity and 
mortality. However, the selection criterion is only mortal-
ity because this trait is easily measured and available in 
most of genetic improvement programs for aquaculture 
species, including striped catfish. Economic values for 
the traits in the breeding goal were arbitrarily set as one. 
The genetic parameters used are given in Tables 1 and 2. 
The selection index in a matrix notation is written as:

where I = index value, b = a weighting factor, and x = phe-
notypic information (susceptibility, infectivity and mor-
tality). A detailed description of the selection index 
approach is given in Cameron [35].

In the selection index, we made the following assump-
tions based on a typical structure of a selective breeding 
program for aquaculture species [36]: i) the pedigree con-
sisted of 100 families (50  sires and 100  dams), ii) there 
were 20 female and 20 male offspring tested per family 
that were potential selection candidates, iii) the pro-
portions of selected animals were 15% in females and 
7.5% in males, and iv) selection was based on individual 
performance.

The annual genetic gain (ΔG) was calculated as:

I = bx
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where  σI  is the standard deviation of the index,  i  is the 
selection intensity (iF = 1.554 and  iM = 1.887), and  L  is 
the generation interval (three years in both sexes). We 
assume that in each generation, a total of 4000 fish are 
recorded (100 families times 40 individuals per family), 
out of which different proportions of males and females 
were selected. The proportion of selected females and 
males was 0.15 and 0.075, corresponding selection inten-
sities of 1.554 (iF) and 1.887 (iM), respectively. The num-
ber of selected females and males was three times (i.e., 
300 females and 150 males) greater than that actually 
needed, to allow for losses and unsuccessful matings.

With the assumptions as described above, together 
with the genetic parameters estimated in this study, 
we predicted genetic gain for each trait in the breeding 
objective, using SelAction [37]. The genetic gains for host 
traits were also compared with that of a conventional 
selection program for a single trait (i.e., only survival/
mortality in the breeding goal).

Results
Genotype and phenotype
This study consisted of 560 individuals, including 490 
offspring and 70 parents from a single generation, 
which were genotyped. These individuals were sampled 
from a population of 5,328 fish and were subjected to 
pathogen challenge tests involving E. ictaluri. Mortal-
ity events occurred relatively early, approximately 1.5 
days after the start of the experiments, with a signifi-
cant increase between 5 and 10 days (Fig. 1). The over-
all mortality rate for the population was 32.5%.

�G = [(iF )(σI )+ (iM)(σI )]/(LF + LM) In this experiment, there were 10 distinct contact 
groups corresponding to 10 spawning batches, each 
was tested in a different tank with varying size (rang-
ing from 22 to 140 individuals). There were significant 
differences in mortality times observed between these 
contact groups (P < 0.05), the difference between the 
highest and lowest groups was 5.4%. Among the con-
tact groups, group #5 exhibited the highest transmis-
sion rate, followed by group #7, while group #6 had the 
lowest transmission rate (Supplementary Table S1).

Genetic variances and heritability estimates 
for epidemiological host traits
Genetic variances and heritability  (h2) estimates for 
epidemiological host traits in striped catfish are statis-
tically significant, as indicated by the 95% confidence 
intervals (CI) presented in Table  1. A 95% CI implies 
that the interval includes the true value in 95 out of 100 
studies. Clearly, all three epidemiological host traits 
had  h2 estimates that were statistically significant, as 
their 95% CI did not encompass a zero effect (Table 1).

Among the traits, Infectivity exhibited a larger genetic 
variance compared to susceptibility and mortality. How-
ever, the heritability estimate for susceptibility was higher 
than that for infectivity, likely due to the larger residual 
variance observed in the latter trait (2.94 vs. 0.53). It is 
worth mentioning that the heritability estimates for sus-
ceptibility may be less reliable due to the wide range of 
its 95% CI. This suggests a larger variation in the suscep-
tibility than other host traits in the population. In con-
trast, the heritability estimate for mortality aligns with 
our independent estimate  (h2 = 0.16) derived from a 

Table 2  Phenotypic (above the diagonal) and genetic (below the diagonal) correlations among epidemiological host traits (95% 
confidence interval in bracket)

Table 1 Additive genetic variances and heritability estimates for epidemiological host traits

Traits Additive genetic variance Total variance Heritability

Mean 95% CI Mean 95% CI Mean 95% CI

Susceptibility 0.48 0.41 — 0.52 1.01 0.45 – 2.10 0.59 0.25 — 0.93

Infectivity 1.76 0.79 — 2.45 4.70 3.59 – 5.45 0.36 0.21 — 0.46

Mortality 0.78 0.37 — 1.01 3.74 3.23 – 4.01 0.20 0.11 — 0.25
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conventional quantitative linear mixed model using the 
restricted maximum likelihood method.

Genetic correlations  (rg) among epidemiological host traits
Epidemiological host traits in our study exhibit genetic 
correlations, as shown in Table  2. The genetic correla-
tions between susceptibility and infectivity, as well as sus-
ceptibility and mortality, were negative (−0.40 and −0.37, 
respectively). Although these estimates were statistically 
significant (their 95% CI did not include zero), the con-
fidence intervals were relatively large due to the limited 
sample size of our dataset.

Infectivity showed a positive genetic correlation with 
mortality (rg = 0.45). However, this estimate was not sta-
tistically significant, as indicated by its 95% CI.

At the phenotypic level, the correlations among traits 
matched the sign and direction of the genetic correla-
tion estimates. However, only the phenotypic correlation 
between infectivity and mortality reached statistical sig-
nificance (0.81, 95% CI = 0.66 – 0.91).

Accuracy of genomic prediction
In Table  3, we present the estimated accuracies of 
genomic prediction for two crucial traits: the transi-
tion time between susceptibility and infectivity as well 
between infectivity and mortality. The prediction models 
were constructed using two sets of SNPs, comprising the 
full set of 6370 SNPs and a subset of only significant SNPs 
(P < 1e-05) (Supplementary Figures S2). Interestingly, we 
observed slightly higher accuracies when employing only 
the significant SNPs in our prediction models. This was 
likely by the trait characteristic, or the high quality of 
the significant SNPs as compared to that of the full set. 
The prediction accuracies for both traits when the sig-
nificant SNPs were employed were also higher than those 
obtained from PBLUP model (Table 3). Overall, the accu-
racies for both traits were found to be moderate, indicat-
ing promising potential for the application of genomic 
selection to improve epidemiological host traits within 
this population of stripped catfish. The SNP heritability 
for these traits were low to moderate (0.14 – 0.33).

Fig. 1 Population plot for susceptibility (S), infectivity (I) and mortality or removal (R). The Y-axis represents the population size (including parents 
of sires and dams), and X-axis shows experimental time beyond 23 days to demonstrate the stabilised S, I and R trends

Table 3 Genetic  (VA) and environmental  (VE) variance, heritability  (h2) and accuracy (± SD) of genomic prediction for transition time 
between susceptibility and infectivity (Time1) and between infectivity and mortality/death removal (Time2)

Number of significant SNPs (P < 1e-05): 519 – 1410

PBLUP Best Linear Unbiased Prediction using pedigree information

Trait VA VE h2 Accuracy
(only significant SNPs)

Accuracy 
(Full set
6470 SNPs)

PBLUP

Time1 3.51 6.95 0.33 ± 0.08 0.74 ± 0.23 0.57 ± 0.18 0.58 ± 0.18

Time2 0.92 5.38 0.14 ± 0.08 0.63 ± 0.61 0.36 ± 0.40 0.50 ± 0.37
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Additive genetic and dominant effects of SNPs
Table 4 shows the additive genetic and dominant effects 
of the top five significant SNPs obtained from our 
GWAS analysis for removal (death) time (Supplemen-
tary Table  S2). Regarding the first SNP, we observed a 
negative additive genetic effect on susceptibility, while its 
effects on infectivity and mortality were positive. For the 
remaining SNPs, both the additive genetic and dominant 
effects were not significant, as their confidence intervals 
included the value zero. However, the dominant effects 
on epidemiological host traits were different from zero or 
one (−1), suggesting they follow an incomplete dominant 
mode of inheritance. These results highlight the complex 
mechanisms underlying genetic variation in disease sus-
ceptibility and transmission dynamics.

Predicted genetic gain
Table 5 presents genetic gains per generation for individ-
ual traits in the breeding objectives, standard deviation of 
the index and of the breeding goal, accuracy of selection, 
and overall gain in economic units. Genetic gains in sus-
ceptibility, infectivity and mortality are as expected from 
their genetic variances and genetic correlations (0.860, 

0.903 and 0.488 days or 9.8, 10.3 and 5.5% per generation, 
respectively). The variance of the index and of the breed-
ing goal was 0.458 and 1.341, respectively. Accuracy of 
the selection index was moderate (0.585). When compar-
ing these values with those of a single trait selection (i.e., 
for mortality only), the multi-trait selection index showed 
somewhat greater accuracy while yielding slightly lower 
genetic gain (Table 5).

Discussion
Genetic variation in host traits
In this study, we have demonstrated the presence of her-
itable genetic variations in three important epidemiologi-
cal host traits: susceptibility, infectivity, and mortality. 
As expected, the genetic variance observed for infectiv-
ity was found to be greater than that of susceptibility and 
mortality within this specific population. These results 
support previous findings that there exists significant 
genetic variation underlying disease prevalence, par-
ticularly in terms of host infectivity. Until now, only two 
studies focusing on aquaculture species have reported 
significant genetic variances for epidemiological host 
traits. In a study on Atlantic salmon, Chose-Topping et al. 

Table 4 Additive and dominant effects of highly significant SNPs (P < 0.5 ×  10–6). Confidence interval in parenthesis

Detailed information of SNPs provided in Table S2

Effect Trait SNP1 SNP2 SNP3 SNP4 SNP5

Additive genetic 
effect

Susceptibility −0.166 (−0.323 — 
−0.003)

−0.165 (−0.394 — 
0.145)

0.10023 (−0.17902 
— 0.36046)

0.099263 (−0.18184 
— 0.36457)

0.085369 (−0.17638 
— 0.30048)

Infectivity 2.838 (2.507 — 
2.996)

1.018 (−2.847 — 
2.996)

−0.41215 (−2.8554 
— 2.9973)

−0.41381 (−2.8610 
— 2.9971)

−0.46826 (−2.7479 — 
2.9971)

Mortality 2.007 (1.825 — 
2.172)

0.109 (−2.229 — 
1.484)

−0.39373 (−1.8884 
— 1.7189)

−0.39331 (−1.8873 
— 1.7174)

−0.40703 (−1.7500 — 
1.7058)

0.361 (−0.705 — 
0.966)

−0.1011 (−0.951 — 
0.906)

−0.27582 (−0.98661 
— 0.95406)

−0.27845 (−0.98630 
— 0.95614)

−0.27753 (−0.98620 
— 0.94617)

Dominant effect Susceptibility 0.476 (0.036 — 
0.916)

0.416 (−0.961 — 
0.987)

0.33717 (−0.96260 
— 0.99563)

0.33513 (−0.96260 
— 0.99609)

0.18858 (−0.97108 — 
0.99534)

Infectivity 0.913 (0.722 — 
0.999)

0.319 (−0.998 — 
0.998)

0.33961 (−0.87130 
— 0.99548)

0.34061 (−0.87225 
— 0.99552)

0.31178 (−0.88221 — 
0.99430)

Mortality −0.166 (−0.323 — 
−0.0029)

−0.165 (−0.394 — 
0.145)

0.10023 (−0.17902 
— 0.36046)

0.099263 (−0.18184 
— 0.36457)

0.085369 (−0.17638 
— 0.30048)

Table 5 Predicted genetic gain using selection index

Estimate Multi‑trait selection Single trait

Susceptibility Infectivity Mortality Mortality

Genetic gain in trait unit (days) 0.860 0.903 0.488 0.597

Genetic gain expressed as percent of the pop-
ulation mean

9.8 10.3 5.5 6.8

Variance of the index 0.458 0.059

Variance of the breeding goal 1.341 0.333

Accuracy of index 0.585 0.422
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[25] discovered that fish with varying resistance capaci-
ties to the infectious salmon anaemia virus displayed 
different levels of susceptibility and endurance against 
the disease. Similarly, an analysis of both simulated and 
empirical data in turbot confirmed significant genetic 
variances in host infectivity, as reported by Prentice et al. 
[23]. Additionally, investigations conducted on farmed 
animals utilised an extended version of the standard 
threshold linear mixed model to jointly estimate genetic 
parameters for susceptibility and recovery in dairy cat-
tle. These studies, conducted by Kulkarni et al. [38] and 
Barden et al. [39], revealed that susceptibility and recov-
ery are distinct genetic traits. These findings suggest that 
genetic selection can be utilised not only to enhance dis-
ease resistance (tolerance/resilience) and/or decrease 
infectivity but also to identify individuals who are less 
susceptible and less likely to transmit diseases within a 
population [22]. Simulation studies have further provided 
evidence supporting our conclusions that genetic selec-
tion can effectively reduce the prevalence of infectious 
diseases in farmed animals and ecological populations 
[40, 41].

Moreover, simultaneous improvements in multiple 
epidemiological traits through genetic selection can be 
realised, given the positive genetic correlations observed 
between susceptibility, infectivity, and mortality in this 
population of striped catfish. Our estimates align with 
those reported in the study conducted on turbot by Pren-
tice et  al. [23]. Collectively, the published information, 
combined with our study results, highlights the poten-
tial for genetic selection to enhance disease resistance, 
decrease infectivity, minimise susceptibility, and reduce 
disease transmission within our population. This knowl-
edge can contribute significantly to the development of 
strategies aimed at mitigating the impact of infectious 
diseases on aquaculture species and farmed animals.

Accuracy of genomic prediction and SNPs effects
To date, genomic prediction has primarily focused on 
disease status or disease resistance indicators in animals 
and plants. Although the prediction accuracy for infec-
tious diseases caused by bacteria, viruses, and para-
sites in these species has generally been moderate to 
low (0.25—0.65) [42–45], our evaluation of prediction 
accuracy for epidemiological host traits falls within this 
range. Surprisingly, when the full set of SNPs was ana-
lysed, the prediction accuracy using GBLUP model was 
not higher than those obtained from PBLUP; however, 
the GBLUP model performed better than PBLUP when 
significant SNPs were employed, such as 0.73 vs. 0.58 
for the transition time from susceptibility to infectivity. 
Collectively, these results suggest the potential for imple-
menting genome-based selection programs to expedite 

genetic advancements in these traits, although a com-
parison should be made with future predictions for dis-
ease status (susceptibility and infectivity) once these data 
are reliably determined in this population. In addition 
to determining genetic parameters that offer fundamen-
tal insights into the quantitative genetic basis of epide-
miological host traits, we also investigated SNP effects 
to unravel the genomic architecture underlying the sus-
ceptibility, infectivity, and mortality of striped catfish. 
Our findings support the evidence that multiple genes, 
each exerting a minor effect, contribute to the control 
of the three epidemiological host traits. Furthermore, 
no significant or incomplete dominant effects of the top 
SNPs (P < 2.25927E-37) on these traits were observed, 
indicating a complex genetic regulation. Moreover, we 
attempted to map the sequences of these significant SNPs 
to the available published genome assemblies for striped 
catfish [46]. Nevertheless, none of the highly significant 
SNPs (P < 1e-05) were associated with immune response. 
Majority of the SNPs linked with known biological func-
tions are not significant. Examples of these genetic vari-
ants include those involved in the positive regulation 
of interferon production (IFN-α and IFN-β), positive 
regulation of interleukin-6 production (IL6), regulation 
of inflammatory responses (NF-κB genes), leukocyte 
migration during immune responses (chemokine recep-
tor and ligand genes), mediation of cytokine signaling 
(JAK1, JAK2, and STAT1), and defence processes (defen-
sin beta, DEFB gene) (Supplementary Figure S3). How-
ever, potential candidate genes were not validated in this 
population, which is due to the short sequence obtained 
by genotyping by sequencing platform (only 68bp), and 
the incomplete genome assembly for the studied species. 
Therefore, future studies should aim to increase the depth 
of sequence coverage or re-sequencing a larger number 
of indviduals and families to obtain more comprehen-
sive insights into the biological functions and pathways 
of genetic variants and functional mutations involved in 
epidemiological host traits of this striped fish popula-
tion. Moreover, due to the potential overestimation of 
the prediction accuracy via the five-fold cross-validation 
approach [44], there is a need to verify these results using 
progeny performance data in future generations of the 
selection program aimed at improving disease resistance 
to E. ictaluri in this population.

Prospects to improve individual and population resilience
Additionally, our findings provide genetic parameters 
to model selection strategies to improve the over-
all resilience of the population [24]. Population resil-
ience encompasses the capacity of a group of animals 
to maintain high production performance even in the 
face of pathogen challenges, or their ability to remain 
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minimally affected by exposure to infectious diseases 
[47, 48]. By emphasising the improvement of popula-
tion resilience, we can realise two key advantages: (i) 
capturing the direct effects of host genetics on the pro-
duction performance and fitness of individuals, and (ii) 
reducing the environmental pathogen load to which 
the population is exposed. This approach is particularly 
applicable to addressing BNP disease, which primarily 
stems from the shedding of the E. ictaluri pathogen by 
members of the striped catfish population. E. ictaluri 
is mostly spread from dead infected catfish to healthy 
individuals in the same population (horizontal trans-
mission). So far, vertical transmission (from parent to 
offspring or from H. pangasius to other species) has not 
been reported, but the presence of the bacteria in the 
gonads suggests it could be possible [49].

To demonstrate potential benefits of this approach, 
we used genetic parameters estimated in the present 
study as the primary inputs within a selection index 
framework to model the genetic gain achieved through 
a selective breeding program targeting three epidemio-
logical traits, using the SIR model. The results demon-
strated that the multi-trait selection index prolonged 
the times to susceptibility, infectivity, and mortality 
from 0.488 to 0.903 days or 5.5 to 10.4% per generation. 
Our approach can be expanded to include new traits, 
such as performance production and fitness-related 
traits when their genetic correlations with suscepti-
bility, infectivity and mortality are available. Broad-
ening the breeding objectives of the genetic program 
in striped catfish by incorporating production traits 
into the selection index would maximise genetic gains 
and economic return for aquaculture enterprises. The 
multi-trait selection index approach not only improve 
growth performance and disease resistance but also 
effectively curtailed undesired increase in other traits, 
e.g., feed intake. Despite these promising results, 
genetic selection aimed at enhancing population resil-
ience to E. ictaluri should consider other factors, such 
as disease dynamics. Understanding disease dynamics 
and identification of key epidemiological factors caus-
ing BNP disease by E. ictaluri [50] are essential for 
effective genetic selection strategies. While incorporat-
ing disease prevalence, transmission routes, and patho-
gen evolution into the models can refine the selection 
process and optimise resilience outcomes, these types 
of information or data are currently not available in 
our studied species, which merit further studies. Addi-
tionally, disease surveillance and continuous monitor-
ing of population resilience and disease prevalence is 
crucial for assessing the effectiveness of genetic selec-
tion programs. Regular evaluations of genetic improve-
ment programs allow for adjustments and refinements 

to breeding objectives and selection strategies as new 
information becomes available [51].

Advantages and limitations
As demonstrated in our study where only the time to 
death was available, the SIR model enabled the estima-
tion of genetic parameters for three different host traits 
(susceptibility, infectivity, and mortality). It also offers 
flexibility to analyse a range of data types, namely disease 
status, diagnostic test results, time censoring start or end 
of epidemics [18, 32]. More importantly, this approach 
assists the improvement in the overall resilience of the 
population rather than in individual animals. However, 
also note that the genetic-epidemiological SIR model 
employed in our study is built upon a set of assumptions, 
such as homogeneous mixing, equal chances of transmis-
sion, and the pivotal role of host transmission. However, 
it is important to acknowledge that numerous infectious 
diseases involve the transmission of pathogens through 
vectors other than direct individual-to-individual con-
tact. For instance, wild hosts like predatory or migra-
tory animals can serve as carriers. Additionally, some 
diseases exhibit low rates of host transmission, while 
certain pathogens remain dormant in the environment. 
The transmission and severity of infectious diseases are 
also influenced by environmental factors and manage-
ment practices. Furthermore, certain diseases are caused 
by multiple pathogens, making it challenging to quan-
tify individual (or population) resistance/resilience in 
these situations [52]. Although our current experimental 
design, including family structure and contact groups, 
enabled the detection of genetic variances and correla-
tions for epidemiological traits, future studies should 
incorporate comprehensive data spanning multiple gen-
erations and in-depth pedigrees. In our study, we only 
observed the time of death, as it was practically unfea-
sible to record the times of susceptibility and infection 
due to the lack of observable clinical signs during group 
testing in tanks. To address this limitation, challenge test 
experiments should be combined with innovative phe-
notyping tools, such as water cameras, in combination 
with laboratory diagnostic tests to capture individual-
level susceptibility and infection information. Through-
out our experiments, we employed PCR to frequently 
confirm the demise of fish, ensuring that they were 
indeed deceased due to E. ictaluri. However, secondary 
infections caused by other pathogens (e.g., Aeromonas 
hydrophila) could not be entirely eliminated. Minor fluc-
tuations in ambient temperature within the experimental 
tanks were beyond our control. Also, a combination of 
cohabitation and direct addition of the pathogen to tanks 
was not accounted for in the SIR model, which might 
have impacted genetic parameter estimates in our study. 
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Furthermore, epidemiological host traits may respond 
differently to developmental stages in striped catfish. We 
didn’t have resources to obtain the pathogen load data of 
individual fish at different stages to identify exactly dis-
ease status (susceptibility and infectivity) of the popula-
tion. Collectively, these factors may have influenced the 
statistical power of our study in distinguishing the vari-
ous genetic components associated with epidemiologi-
cal host traits. Addressing these factors can effectively 
enhance the resilience of populations in genetic selection 
program, ultimately improving production performance 
and minimizing the impact of infectious diseases. There-
fore, future studies should take these factors into consid-
eration to enhance the reliability of genetic parameters 
for epidemiological traits in striped catfish and other 
aquaculture species.

Concluding remarks and suggestions
Our study highlights the significant presence of heritable 
genetic variations in epidemiological host traits, includ-
ing susceptibility, infectivity, and mortality. The herit-
ability estimates for these traits are generally moderate. 
Genetic correlations between susceptibility and infec-
tivity, as well as between susceptibility and mortality 
were negative, while a positive correlation was observed 
between infectivity and mortality. Genomic predic-
tion for transition time from susceptibility to infectiv-
ity and from infectivity to mortality achieved moderate 
level of accuracy, suggesting possibilities for performing 
genome-based selection programs to improve epide-
miological host traits in striped catfish. However, these 
results should be compared with those obtained using 
actual data on disease status (susceptibility and infec-
tivity) when these traits are reliably determined in this 
population. Using a selection index approach, we made 
predictions regarding genetic gains, which ranged from 
5.5 to 10.3% per generation. While these findings are 
promising, we strongly recommend further analysis 
with an increased accumulation of data especially from 
progeny testing schemes to obtain more reliable esti-
mates of the genetic parameters and genomic prediction 
accuracies for epidemiological host traits. In addition to 
genetic selection aimed at reducing susceptibility, infec-
tivity and mortality, indirect selection for enhanced 
immune response can be practised through recording 
immunological traits such as IgM, IgG, and lymphocyte 
counts. Breeding animals with stronger immune systems, 
enhanced innate defence mechanisms, and reduced path-
ogen shedding can effectively mitigate infectivity rates. 
Selectively bred animals with superior immune responses 
and faster recovery times, based on the identification and 
targeting of immune-related traits or markers associ-
ated with expedited recovery rates also can enhance the 

overall resilience of the population. In addition, future 
studies should prioritise the identification of genes 
responsible for these traits to deepen our understanding 
of the complex genomic architecture underlying these 
characteristics. Such knowledge will significantly con-
tribute to future genetic improvement endeavours, ulti-
mately enhancing the resistance to infectious diseases in 
the population of striped catfish under investigation.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s44365- 025- 00006-6.

Supplementary Material 1.

Acknowledgements
We would like to thank the team at National Breeding Centre for Southern 
Aquaculture (NABRECSOFA), Research Institute for Aquaculture (RIA2) for their 
hard work in handling the animals and data collection.

Authors’ contributions
NHN: Conceptualisation, Resources, Methodology, Formal Analysis, Writing 
-original draft, reviewing and editing, supervision NTV: Conduct of the experi-
ment, Data curation and analysis, draft preperation and approval of the sub-
mission. TTMH: Data management, analysis, editing. THP: Funding aqusition, 
supervision, experiments, data collection and analysis. All authors approved to 
submit the manuscript.

Funding
This study was jointly funded by Ministry of Agriculture and Rural Develop-
ment (MARD), Vietnam (Project tittle: Breeding for disease resistance to Bacil-
lary Necrosis of Pangasius for striped catfish, 2018 – 2020) and higher degree 
by research fundings from University of the Sunshine Coast, Australia.

Data availability
No datasets were generated or analysed during the current study.

Declarations

Competing interests
The authors declare no competing interests.

Author details
1 School of Science, Engineering and Technology, University of the Sunshine 
Coast, Locked Bag 4, Maroochydore DC, QLD 4558, Australia. 2 Center for Bioin-
novation, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, 
QLD 4558, Australia. 3 Research Institute for Aquaculture No.2,, 121 Nguyen 
Dinh Chieu Street, District 1, Ho Chi Minh City, Vietnam. 4 Tropical Futures Insti-
tute, James Cook University, 149 Sims Drive, Singapore 387380, Singapore. 

Received: 4 December 2024   Accepted: 29 January 2025

References
 1. FAOSTAT. Statistical Database. Rome: Food and Agriculture Organization 

of the United Nations; 2020.
 2. Vu N. Genetics of the bacterial (Edwardsiella ictaluri) disease resistance in 

striped catfish (Pangasianodon hypophthalmus). PhD thesis. University of 
the Sunshine Coast, Queensland; 2021.

 3. Segner H, Sundh H, Buchmann K, Douxfils J, Sundell KS, Mathieu C, 
Ruane N, Jutfelt F, Toften H, Vaughan L. Health of farmed fish: its relation 
to fish welfare and its utility as welfare indicator. Fish Physiol Biochem. 
2012;38(1):85–105.

https://doi.org/10.1186/s44365-025-00006-6
https://doi.org/10.1186/s44365-025-00006-6


Page 12 of 13Nguyen et al. Aquaculture Science and Management             (2025) 2:2 

 4. Robinson NA, Robledo D, Sveen L, Daniels RR, Krasnov A, Coates A, Jin 
YH, Barrett LT, Lillehammer M, Kettunen AH, et al. Applying genetic 
technologies to combat infectious diseases in aquaculture. Rev Aquac. 
2023;15(2):491–535.

 5. Bishop SC, Axford RF, Nicholas FW, Owen JB. Breeding for disease resist-
ance in farm animals: CABI; 2010.

 6. Van Khang P, Van Nha V, Nguyen NH. Resistance to Streptococcus iniae 
and its genetic associations with traits of economic importance in Asian 
seabass (Lates calcarifer). J Fish Dis. 2019;42(12):1657–66.

 7. Vu NT, Sang NV, Trong TQ, Duy NH, Dang NT, Nguyen NH. Breeding for 
improved resistance to Edwardsiella ictaluri in striped catfish (Pan-
gasianodon hypophthalmus): Quantitative genetic parameters. J Fish Dis. 
2019;42(10):1409–17.

 8. Trang TT, Hung NH, Ninh NH, Knibb W, Nguyen NH. Genetic variation in 
disease resistance against White Spot Syndrome Virus (WSSV) in Liptope-
naeus vannamei. Front Genet. 2019;10:264.

 9. Nguyen NH, Vu NT. Threshold models using Gibbs sampling and machine 
learning genomic predictions for skin fluke disease recorded under field 
environment in yellowtail kingfish Seriola lalandi. Aquaculture. 2022;547: 
737513.

 10. Phuthaworn C, Nguyen NH, Quinn J, Knibb W. Moderate heritability of 
hepatopancreatic parvovirus titre suggests a new option for selection 
against viral diseases in banana shrimp (Fenneropenaeus merguiensis) 
and other aquaculture species. Genet Sel Evol. 2016;48(1):64.

 11. Van Sang N, Dung TTP, Phuong VH, Nguyen NH, Thinh NH. Immune 
response of selective breeding striped catfish families (Pangasiandon 
hypophthalmus) to Edwardsiella ictaluri after challenge. Aquaculture. 
2023;572: 739515.

 12.  Cavallino L, Rincón L, Scaia MF. Social behaviors as welfare indicators in 
teleost fish. 2023;10.

 13. Gilmour A, Anderson RD, Rae AL. The analysis of binomial data by a 
generalized linear mixed model. Biometrika. 1985;72(3):593–9.

 14. Taylor RS, Carvalheiro R, Patchett AL, Verbyla KL, Carson J, Wynne JW, 
Evans BS, Lind CE, King H. Genetic and genomic analyses of resistance to 
yersiniosis in Atlantic salmon (Salmo salar) assessed by tank challenge. 
Aquaculture. 2023;564: 739088.

 15. Trang TT, Hung NH, Ninh NH, Nguyen NH. Selection for improved white 
spot syndrome virus resistance increased larval survival and growth rate 
of Pacific Whiteleg shrimp, Liptopenaeus vannamei. J Invertebr Pathol. 
2019;166: 107219.

 16. Dégremont L, Garcia C, Allen SK Jr. Genetic improvement for disease 
resistance in oysters: a review. J Invertebr Pathol. 2015;131:226–41.

 17. Milgroom MG. Epidemiology and SIR Models. In: Biology of Infectious 
Disease: From Molecules to Ecosystems. Cham: Springer International 
Publishing. 2023 p. 253–268.

 18. Pooley CM, Marion G, Bishop SC, Bailey RI, Doeschl-Wilson AB. Estimat-
ing individuals’ genetic and non-genetic effects underlying infectious 
disease transmission from temporal epidemic data. PLoS Comput Biol. 
2020;16(12): e1008447.

 19. Bishop S, Stear M. Genetic and epidemiological relationships between 
productivity and disease resistance: gastro-intestinal parasite infection in 
growing lambs. J Animal Science. 1999;69(3):515–24.

 20. Doeschl-Wilson AB, Davidson R, Conington J, Roughsedge T, Hutchings 
MR, Villanueva B. Implications of host genetic variation on the risk and 
prevalence of infectious diseases transmitted through the environment. 
Genetics. 2011;188(3):683–93.

 21. Anacleto O, Cabaleiro S, Villanueva B, Saura M, Houston RD, Woolliams 
JA. Doeschl-Wilson ABJSr: Genetic differences in host infectivity affect 
disease spread and survival in epidemics. 2019;9(1):4924.

 22. Tsairidou S, Anacleto O, Woolliams J, Doeschl-Wilson A. Enhancing 
genetic disease control by selecting for lower host infectivity and suscep-
tibility. Heredity. 2019;122(6):742–58.

 23. Prentice J, Pooley C, Tsairidou S, Wong RP, Anacleto O, Saura M, Bailey R, 
Marion G, Villanueva B, Doeschl-Wilson A: Transmission experiment in 
turbot shows high genetic variation in host infectivity affecting disease 
spread and survival. In: Proceedings of 12th World Congress on Genet-
ics Applied to Livestock Production (WCGALP) Technical and species 
orientated innovations in animal breeding, and contribution of genetics 
to solving societal challenges: 2022: Wageningen Academic Publishers; 
2022. p. 728–731.

 24. Doeschl-Wilson A, Knap P, Opriessnig T, More SJ. Livestock disease resil-
ience: from individual to herd level. Animal. 2021;15: 100286.

 25. Chase-Topping ME, Pooley C, Moghadam HK, Hillestad B, Lillehammer M, 
Sveen L, Doeschl-Wilson A. Impact of vaccination and selective breeding 
on the transmission of infectious salmon anemia virus. Aquaculture. 
2021;535: 736365.

 26. Dorfman B, Marcos-Hadad E, Tadmor-Levi R, David L. Disease resistance 
and infectivity of virus susceptible and resistant common carp strains. Sci 
Rep. 2024;14(1):4677.

 27. Vu NT, Van Sang N, Phuc TH, Vuong NT, Nguyen NH. Genetic evaluation of 
a 15-year selection program for high growth in striped catfish Pangasian-
odon hypophthalmus. Aquaculture. 2019;509:221–6.

 28. Kilian A, Wenzl P, Huttner E, Carling J, Xia L, Blois H, Caig V, Heller-Uszynska 
K, Jaccoud D, Hopper C. Diversity arrays technology: a generic genome 
profiling technology on open platforms. In: Data production and analysis 
in population genomics. Springer; 2012: 67–89.

 29. Vu NT, Ha TTT, Thuy VTB, Trang VT, Nguyen NH. Population Genomic 
Analyses of Wild and Farmed Striped Catfish Pangasianodon Hypophthal-
mus in the Lower Mekong River. Journal of Marine Science and Engineer-
ing. 2020;8(6):471.

 30. Gruber B, Unmack PJ, Berry OF, Georges A. dartr: An r package to facilitate 
analysis of SNP data generated from reduced representation genome 
sequencing. Mol Ecol Resour. 2018;18(3):691–9.

 31. Doeschl-Wilson A, Marion G, Pooley C. New tools and insights to enable 
breeding for reduced disease transmission. In: Proceedings of 12th 
World Congress on Genetics Applied to Livestock Production (WCGALP) 
Technical and species orientated innovations in animal breeding, and 
contribution of genetics to solving societal challenges: 2022: Wagenin-
gen Academic Publishers; 2022. p. 724–727.

 32. Pooley C, Marion G, Bishop S, Doeschl-Wilson A. Optimal experimental 
designs for estimating genetic and non-genetic effects underlying infec-
tious disease transmission. Genet Sel Evol. 2022;54(1):1–22.

 33. Gilmour AR, Gogel BJ, Cullis BR, Welham S, Thompson R. ASReml user 
guide release 4.0. 2002.

 34. Misztal I, Tsuruta S, Strabel T, Auvray B, Druet T, Lee D. BLUPF90 and 
related programs (BGF90). In: Proceedings of the 7th world congress on 
genetics applied to livestock production: 2002: Montpellier. 2002. p. 743.

 35. Cameron ND. Selection Indices and Prediction of Genetic Merit in Animal 
Breeding: CAB International. 1997.

 36. Ponzoni RW, Nguyen NH, Khaw HL, Ninh NH. Accounting for geno-
type by environment interaction in economic appraisal of genetic 
improvement programs in common carp Cyprinus carpio. Aquaculture. 
2008;285(1):47–55.

 37. Rutten MJM, Bijma P, Woolliams JA, van Arendonk JAM. SelAction: Soft-
ware to Predict Selection Response and Rate of Inbreeding in Livestock 
Breeding Programs. J Hered. 2002;93(6):456–8.

 38. Kulkarni PS, Biemans F, de Jong MCM, Bijma P. On the origin of the 
genetic variation in infectious disease prevalence: Genetic analysis of 
disease status versus infections for digital dermatitis in Dutch dairy cattle. 
J Anim Breed Genet. 2021;138(6):629–42. https:// doi. org/ 10. 1111/ jbg. 
12635.

 39. Barden M, Anagnostopoulos A, Griffiths BE, Li B, Bedford C, Watson C, 
et al. Genetic parameters of sole lesion recovery in Holstein cows. J Dairy 
Sci. 2023;106(3):1874–88. https:// doi. org/ 10. 3168/ jds. 2022- 22064.

 40. Hulst AD, de Jong MC, Bijma P. Why genetic selection to reduce the 
prevalence of infectious diseases is way more promising than currently 
believed. Genetics. 2021;217(4):iyab024.

 41. Bijma P, Hulst AD, de Jong MC. The quantitative genetics of the preva-
lence of infectious diseases: hidden genetic variation due to Indirect 
Genetic Effects dominates heritable variation and response to selection. 
Genetics. 2022;220(1):141.

 42.  Vallejo RL, Fragomeni BO, Cheng H, Gao G, Long RL, Shewbridge KL, Mac-
Millan JR, Towner R, Palti Y. Assessing accuracy of genomic predictions 
for resistance to infectious hematopoietic necrosis virus with progeny 
testing of selection candidates in a commercial rainbow trout breeding 
population. Front Vet Sci. 7:590048. https:// doi. org/ 10. 3389/ fvets. 2020. 
590048.

 43. Allal F, Nguyen NH. Genomic Selection in AquacultureAquaculture Spe-
cies. In: Genomic Prediction of Complex Traits: Methods and Protocols. 
Edited by Ahmadi N, Bartholomé J. New York, NY: Springer US; 2022: 
469–491.

https://doi.org/10.1111/jbg.12635
https://doi.org/10.1111/jbg.12635
https://doi.org/10.3168/jds.2022-22064
https://doi.org/10.3389/fvets.2020.590048
https://doi.org/10.3389/fvets.2020.590048


Page 13 of 13Nguyen et al. Aquaculture Science and Management             (2025) 2:2  

 44. Vallejo RL, Pietrak MR, Milligan MM, Gao G, Tsuruta S, Fragomeni BO, Long 
RL, Peterson BC, Palti Y. Genetic architecture and accuracy of predicted 
genomic breeding values for sea lice resistance in the St John River aqua-
culture strain of North American Atlantic salmon. Aquaculture. 2024;586: 
740819.

 45. Nguyen NH. Genetics and Genomics of Infectious Diseases in Key Aqua-
culture Species. Biology. 2024;13(1):29.

 46. Kim OTP, Nguyen PT, Shoguchi E, Hisata K, Vo TTB, Inoue J, Shinzato C, Le 
BTN, Nishitsuji K, Kanda M, et al. A draft genome of the striped catfish, 
Pangasianodon hypophthalmus, for comparative analysis of genes 
relevant to development and a resource for aquaculture improvement. 
BMC Genomics. 2018;19(1):733.

 47. Berghof TV, Poppe M, Mulder HA. Opportunities to improve resilience in 
animal breeding programs. Front Genet. 2019;9:692.

 48. Knap PW, Doeschl-Wilson A. Why breed disease-resilient livestock, and 
how? Genet Sel Evol. 2020;52:1–18.

 49. Machimbirike VI, Crumlish M, Dong HT, Santander J, Khunrae P, Rattanaro-
jpong T. Edwardsiella ictaluri: A systemic review and future perspectives 
on disease management. Rev Aquac. 2022;14(3):1613–36.

 50.  Kirkeby C, Brookes VJ, Ward MP, Dürr S, Halasa T. A practical introduction 
to mechanistic modeling of disease transmission in veterinary sci-
ence. Front Vet Sci. 7:546651. https:// doi. org/ 10. 3389/ fvets. 2020. 546651.

 51. Nguyen NH. Genetic improvement for important farmed aquaculture 
species with a reference to carp, tilapia and prawns in Asia: achievements, 
lessons and challenges. Fish Fish. 2016;17(2):483–506.

 52. Putz AM, Harding JC, Dyck MK, Fortin F, Plastow GS, Dekkers JC, Canada 
P. Novel resilience phenotypes using feed intake data from a natural 
disease challenge model in wean-to-finish pigs. Front Genet. 2019;9:660.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.3389/fvets.2020.546651

	Impact of genetic and genomic factors on host traits in striped catfish infected with Edwardsiella ictaluri
	Abstract 
	Introduction
	Materials and methods
	Animals
	Challenge test and data collection
	Genotype data
	Estimation of genetic (co)-variances
	Accuracy of genomic prediction
	Estimation of SNPs effects
	Prediction of genetic gain

	Results
	Genotype and phenotype
	Genetic variances and heritability estimates for epidemiological host traits
	Genetic correlations (rg) among epidemiological host traits
	Accuracy of genomic prediction
	Additive genetic and dominant effects of SNPs
	Predicted genetic gain

	Discussion
	Genetic variation in host traits
	Accuracy of genomic prediction and SNPs effects
	Prospects to improve individual and population resilience
	Advantages and limitations

	Concluding remarks and suggestions
	Acknowledgements
	References


